#25 データ分析手法(アソシエーション分析)

 [公開]
icon 秋山 賢 が 2018/10/09 1:50 に投稿
  投稿を編集(サインイン)
  ストック
  アンケート回答

  目次

アソシエーション分析

アソシエーション分析とは、膨大なデータから意味のある関連性(アソシエーションルール)を抽出する分析手法です。
ECサイトやPOSの取引データから「商品Aを買うと、商品Bも買う確率が高い」というようなルールを見つけ出す方法になります。

評価指標

アソシエーションの強さは以下の3つの値で評価します。
・支持度(Support)
・信頼度(Confidence)
・リフト値(Lift)

「架空の購入データ」

購入明細ID購入商品
1弁当、バナナ、たばこ
2パン、コーヒー、チョコレート
3弁当、ビール、たばこ
4雑誌、コーヒー、チョコレート
5ビール、たばこ、コーヒー

⇒アソシエーションルールに変換

条件部(A) 結論部(B)支持度信頼度リフト値
弁当たばこ0.550.631.21
コーヒーチョコレート0.500.551.32
ビールたばこ0.490.501.45

A・Bを事象として「Aという条件の時にBが起こる」を、「A⇒B」と表します。
(Aを条件部、Bを結論部という)

1.支持度
支持度(A⇒B) = 条件部(A)と結論部(B)をともに含むデータ数 ÷ 全データ数

全データの中で、「商品Aを購入するときに、商品Bも一緒に購入する」というルールが出現する割合です。
この指標が高いほど、全体の中でそのルールが出現する割合が高くなります。

2.信頼度
信頼度(A⇒B) = 条件部(A)と結論部(B)をともに含むデータ数 ÷ 条件部(A)を含むデータ数

条件部(A)の項目が出現する割合の中で、条件部(A)と結論部(B)が同時に出現する割合です。
この指標が高いほど、AとBの商品は関連が強いということになります。

3.リフト値
リフト値 = 確信度(A⇒B) ÷ 結論部(B)を含むデータ数

条件部(A)と一緒に結論部(B)を購入した顧客の割合が、全データの中で結論部(B)を購入した顧客の割合よりどのくらい多いかを示したものです。
この指標が低いほど、Bの商品は単独でよく売れているということになります。

 添付ファイル     - [0]


 コメント追加